On the Canham Problem: Bending Energy Minimizers for any Genus and Isoperimetric Ratio
نویسندگان
چکیده
Building on work of Mondino–Scharrer, we show that among closed, smoothly embedded surfaces in $${\mathbb {R}}^3$$ genus g and given isoperimetric ratio v, there exists one with minimum bending energy $${\mathcal {W}}$$ . We do this by gluing $$g+1$$ small catenoidal bridges to the bigraph a singular solution for linearized Willmore equation $$\Delta (\Delta +2)\varphi =0$$ $$(g+1)$$ -punctured sphere {S}}^2$$ construct comparison surface arbitrarily $$v\in (0, 1)$$ {W}}< 8\pi $$
منابع مشابه
Uniform Energy Distribution for Minimizers of an Isoperimetric Problem Containing Long-Range Interactions
We study minimizers of a nonlocal variational problem. The problem is a mathematical paradigm for the ubiquitous phenomenon of energy-driven pattern formation induced by competing short and long-range interactions. The short range interaction is attractive and comes from an interfacial energy, the long range interaction is repulsive and comes from a nonlocal energy contribution. In particular, ...
متن کاملSharp N3/4 Law for the Minimizers of the Edge-Isoperimetric Problem on the Triangular Lattice
We investigate the edge-isoperimetric problem (EIP) for sets of n points in the triangular lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. By introducing a suitable notion of perimeter and area, EIP minimizers are characterized as extremizers of an isoperimetric inequality: they attain maximal area and minimal perimeter among connected c...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Note on the Global Minimizers of the Nonlocal Isoperimetric Problem in Two Dimensions
In this article we analyze the minimization of the so-called nonlocal isoperimetric problem (NLIP) posed on the flat 2-torus. After establishing regularity of the free boundary of minimizers, we show that when the parameter controlling the influence of the nonlocality is small, there is an interval of values for the mass constraint such that the global minimizer is exactly lamellar; that is, th...
متن کاملCascade of Minimizers for a Nonlocal Isoperimetric Problem in Thin Domains
For Ω ε = (0, ε) × (0, 1) a thin rectangle, we consider minimization of the two-dimensional nonlocal isoperimetric problem given by inf u
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2023
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-022-01833-w